Undecidability of Propositional Separation Logic and Its Neighbours
نویسندگان
چکیده
منابع مشابه
A Undecidability of propositional separation logic and its neighbours
In this paper, we investigate the logical structure of memory models of theoretical and practical interest. Separation logic provides us with an effective language for reasoning about such memory models. Our main result is that for any concrete choice of heap-like memory model, validity in that model is undecidable even for purely propositional formulas in this language. The main novelty of our...
متن کاملEquality propositional logic and its extensions
We introduce a new formal logic, called equality propositional logic. It has two basic connectives, $boldsymbol{wedge}$ (conjunction) and $equiv$ (equivalence). Moreover, the $Rightarrow$ (implication) connective can be derived as $ARightarrow B:=(Aboldsymbol{wedge}B)equiv A$. We formulate the equality propositional logic and demonstrate that the resulting logic has reasonable properties such a...
متن کاملThe undecidability of propositional adaptive logic
We investigate and classify the notion of final derivability of two basic inconsistency-adaptive logics. Specifically, the maximal complexity of the set of final consequences of decidable sets of premises formulated in the language of propositional logic is described. Our results show that taking the consequences of a decidable propositional theory is a complicated operation. The set of final c...
متن کاملReducing separation formulas to propositional logic
We show a reduction to propositional logic from a Boolean combination of inequalities of the form and , where is a constant and are variables of type real or integer. Equalities and uninterpreted functions can be expressed in this logic as well. We discuss the advantages of using this reduction as compared to competing methods, and present experimental results that support our claims. This rese...
متن کاملDecidability and Undecidability Results for Propositional Schemata
We define a logic of propositional formula schemata adding to the syntax of propositional logic indexed propositions (e.g., pi) and iterated connectives ∨ or ∧ ranging over intervals parameterized by arithmetic variables (e.g., ∧n i=1 pi, where n is a parameter). The satisfiability problem is shown to be undecidable for this new logic, but we introduce a very general class of schemata, called b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the ACM
سال: 2014
ISSN: 0004-5411,1557-735X
DOI: 10.1145/2542667